Node Identification Using Inter-Regional Correlation Analysis for Mapping Detailed Connections in Resting State Networks
نویسندگان
چکیده
Brain function is often characterized by the connections and interactions between highly interconnected brain regions. Pathological disruptions in these networks often result in brain dysfunction, which manifests as brain disease. Typical analysis investigates disruptions in network connectivity based correlations between large brain regions. To obtain a more detailed description of disruptions in network connectivity, we propose a new method where functional nodes are identified in each region based on their maximum connectivity to another brain region in a given network. Since this method provides a unique approach to identifying functionally relevant nodes in a given network, we can provide a more detailed map of brain connectivity and determine new measures of network connectivity. We applied this method to resting state fMRI of Alzheimer's disease patients to validate our method and found decreased connectivity within the default mode network. In addition, new measure of network connectivity revealed a more detailed description of how the network connections deteriorate with disease progression. This suggests that analysis using key relative network hub regions based on regional correlation can be used to detect detailed changes in resting state network connectivity.
منابع مشابه
طبقهبندی بیماری پارکینسون بر مبنای شاخصهای درون-ناحیهای و بین-ناحیهای شبکه حرکتی مغز با استفاده از دادگان fMRI حالت استراحت
Parkinson’s disease (PD) is a progressive neurological disorder characterized by tremor, rigidity, and slowness of movement. Recent studies on investigation of the brain function show that there are spontaneous fluctuations between regions at rest as resting state network affected in various disorders. In this paper, we used amplitude of low frequency fluctuation (ALFF) for the study of intra-r...
متن کاملAnalysis of Resting-State fMRI Topological Graph Theory Properties in Methamphetamine Drug Users Applying Box-Counting Fractal Dimension
Introduction: Graph theoretical analysis of functional Magnetic Resonance Imaging (fMRI) data has provided new measures of mapping human brain in vivo. Of all methods to measure the functional connectivity between regions, Linear Correlation (LC) calculation of activity time series of the brain regions as a linear measure is considered the most ubiquitous one. The strength of the dependence obl...
متن کاملCorticocortical evoked potentials reveal projectors and integrators in human brain networks.
The cerebral cortex is composed of subregions whose functional specialization is largely determined by their incoming and outgoing connections with each other. In the present study, we asked which cortical regions can exert the greatest influence over other regions and the cortical network as a whole. Previous research on this question has relied on coarse anatomy (mapping large fiber pathways)...
متن کاملBrain Activity Map Extraction from Multiple Sclerosis Patients Using Resting-State fMRI Data Based on Amplitude of Low Frequency Fluctuations and Regional Homogeneity Analysis
Introduction: Multiple Sclerosis (MS) is the most common non-traumatic neurological diseases of young adults. MS often reported during ages 20-62. MS affects the various anatomical parts of the central nervous system. Up to 65% of multiple sclerosis patients MS patients suffer from various problems, such as fatigue, depression, pain and sleep disorders. Unlike MRI, that only sh...
متن کاملRole of STDP in regulation of neural timing networks in human: a simulation study
Many physiological events require an accurate timing signal, usually generated by neural networks called central pattern generators (CPGs). On the other hand, properties of neurons and neural networks (e.g. time constants of neurons and weights of network connections) alter with time, resulting in gradual changes in timing of such networks. Recently, a synaptic weight adjustment mechanism has b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 11 شماره
صفحات -
تاریخ انتشار 2017